The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline.
نویسندگان
چکیده
Noradrenaline (NA), a key neurotransmitter of the endogenous pain inhibitory system, acutely inhibits nociceptive transmission (including that mediated by substance P), potentiates opioid analgesia, and underlies part of the antinociceptive effects of the widely prescribed tricyclic antidepressants. Lesions of noradrenergic neurons, however, result in either normal or reduced pain behavior and variable changes in morphine antinociception, undermining the proposed association between noradrenaline (NA) deficiency and chronic pain (hyperalgesia). We used mice lacking the gene coding for dopamine beta-hydroxylase, the enzyme responsible for synthesis of NA from dopamine, to reexamine the consequences of a lack of NA on pain behavior. Here, we show that absence of NA in the central nervous system results in a substance P-mediated chronic hyperalgesia (decreased nociceptive threshold) to thermal, but not mechanical, stimuli and decreased efficacy of morphine. Contrary to studies that show substance P-mediated hyperalgesia requires intense stimuli, we found that even a mild stimulus is sufficient to evoke substance P-dependent hyperalgesia in the NA-deficient mice. Restoring central NA normalized both the nociceptive threshold and morphine efficacy, which is consistent with a tonic inhibitory effect of NA on nociceptive transmission. Unexpectedly, however, antagonists to the substance P receptor (the NK1 receptor) could achieve the same effect as NA replacement. We conclude that when unopposed by NA, substance P acting at the NK1 receptor causes chronic thermal hyperalgesia, and that the reduced opioid efficacy associated with a lack of NA is due to increased NK1-receptor stimulation.
منابع مشابه
The effect of CCK receptor agonists and antagonists in sciatic nerve-ligated mice
The effects of caerulin, a CCK receptor agonist, and proglumide, a receptor antagonist, on hyperalgesia induced by sciatic nerve ligation, was studied in mice. Tolerance to the morphine response was obtained 3,7, 14,21 and 28 days after unilateral sciatic nerve ligation. Maximum hyperalgesia was found 14 days after nerve ligation. Caerulin increased morphine antinociception in nerve-ligated ani...
متن کاملThe effect of intracerebroventricular administration of CCK receptor agonist and antagonist in nerve-Iigated mice
In the present study the effect of intracerebroventricular (ICV) injection of cerulein, an agonist of CCK receptor and proglumide, a receptor antagonist for hyperalgesia induced by sciatic nerve ligation were investigated in mice. Subcutaneous administration of morphine caused anti-nociception in both intact and nerve-ligated mice. However, the response to opioids was lower in ligated mice as c...
متن کاملSubstance P, opioid, and catecholamine systems in the mouse central nervous system (CNS).
I an article in this issue of PNAS, Jasmin et al. (1) provide new evidence that noradrenaline is a key neurotransmitter in the endogenous pain inhibitory systems in the central nervous system (CNS) of the mouse. They show that this adrenergic inhibitory system interacts with that part of the sensory nociceptive system by using the neuropeptide substance P in a mutually antagonistic manner. They...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2002